[A photograph for newspaper use is available at http://www.clarkson.edu/news/photos/vr_rehabilitation.jpg]

For patients recovering from strokes or certain types of injuries, using repetitive and strength-building exercises to regain ranges of motion, grip and balance is an important part of the recovery process.

At Clarkson University's emerging Center for Assistive and Adaptive Technologies for Rehabilitation Engineering, Professor James Carroll of the Department of Electrical and Computer Engineering is working with an interdisciplinary team of scientists and healthcare professionals on research using virtual reality technology to facilitate rehabilitation for stroke patients and people with certain neurological disorders or injuries.

"Research indicates that intensive, repetitive practice may be necessary for motor skill recovery in patients following strokes," explained Carroll. " Virtual reality technology has the capability of creating a 3-D interactive, motivating environment, which permits patient interaction with virtual objects through gestures, movement and motion."

At the Advanced Visualization (AV) Laboratory at Clarkson, Carroll works with George Fulk, an instructor in the Department of Physical Therapy and Jan Searleman, an instructor in the Department of Mathematics and Computer Science, as well as outside research partners including Good Shepherd Rehabilitation Center, the University of Ottawa, and JesterTek Inc. The scientists are working to develop virtual-reality based physical therapy interventions to assist individuals with disabilities.

To create a fully immersive, virtual 3-D environment for patients that is highly realistic, the AV Laboratory houses a room-sized visualization space that resembles a three-walled cubic theater. Each of the wall sections consists of an eight-foot-high-by-10-foot-wide rear projection screen that displays computer-generated imagery stereoscopically, i.e. in 3-D, using two high-resolution, high-powered computer projectors and a set of circularly polarized filters. Users inside the visualization space experience the content in 3-D by wearing a pair of polarized glasses that look similar to ordinary sunglasses. The visualization space is driven by a cluster of high-end personal computers.

In addition to the 3-D imagery, the immersive experience is enhanced by a multi-speaker surround sound system and electronic devices that track and measure the motion of the humans within the visualization space. The laboratory is also equipped with head-mounted displays and shutter glasses for less immersive interaction..

The facilities allow patients to experience an immersive environment and to physically interact with a virtual world to create a rich sensory experience that is highly stimulating and closely representative of the patient's daily living environment.

"For example, a patient working to recover range of motion in her arm or grip, can use the tracked pinch gloves to practice reaching, grabbing and releasing packages in a light industrial work environment, while all her moves are being tracked and analyzed by a computer," explained Carroll.

The simulations and therapeutic exercises can be adjusted for individualized treatments to target upper or lower extremity functional training, gait training or vestibulator (balance) rehabilitation.

Clarkson University, located in Potsdam, New York, is an independent university with a reputation for developing innovative leaders in technology-based fields. Its academically rigorous, collaborative culture involves 2,700 undergraduates and 350 graduate students in hands-on team projects, multidisciplinary research, and real-world challenges. Many faculty members achieve international recognition for their scholarship and research, and teaching is a priority at every level. For more information, visit http://www.clarkson.edu.

PHOTO CAPTION: At Clarkson University's Advanced Visualization Laboratory, graduate student Ajay Gopinath (left) and Professor James Carroll (right), both of the Department of Electrical and Computer Engineering, conduct a demonstration of how virtual reality technology can be used in rehabilitation. Here, Carroll moves an avatar of his arm in a virtual environment (in this case manipulating a cup of coffee on a kitchen counter) by moving his own arm in the visualization space. He is also wearing four electromagnetic sensors to give position/orientation information of his arm and electromyography sensors to measure muscle activity.