Scripps Florida Scientist Awarded $2.3 Million to Study Dengue Fever and Related Viruses

Released: 27-Mar-2014 12:00 PM EDT
Source Newsroom: Scripps Research Institute
Contact Information

Available for logged-in reporters only

Citations 1R01AI110692

Newswise — JUPITER, FL – March 27, 2014 – The outbreak of dengue fever that infected some 20 people in Florida’s Martin County late last year unnerved many who feared the tropical disease had once again established a foothold in Florida. The last outbreaks occurred in 2009 and 2010 in Key West—before that, the disease hadn’t struck Florida in more than 70 years.

Now, scientists from the Florida campus of The Scripps Research Institute (TSRI) have been awarded $2.3 million to study a category of viruses that cause dengue fever, West Nile, yellow fever and other diseases spread by mosquitoes and ticks. These diseases can result in flulike symptoms, extreme pain (dengue has been called “bone-break fever”) and, in some cases, encephalitis.

This family of viruses, called “flavivirus,” affect some 2.5 billion people worldwide and cause hundreds of thousands of deaths each year. There are no antiviral treatments and a just handful of vaccines that provide protection against only a few of these diseases.

The principal investigator for the new five-year study is TSRI Associate Professor Hyeryun Choe, who will lead the effort to understand the virus’s mode of infection and how new therapies might interrupt it.

“Flavivirus uses a very clever method of infection,” Choe said. “It’s like using a side door to enter a house when the front door is locked.”

The viruses take advantage of the process that normally occurs during programmed cell death. During programmed cell death (“apoptosis”), a lipid usually found on the inner side of the cell membranes, specifically phosphatidylserine (PS), shifts to the surface, making itself readily available to any passing cellular stranger. This is where the trouble begins.

When cells are dying from a flavivirus infection, their freshly exposed PS is grabbed by the exiting virus, and phagocytes—cells that devour invading pathogens and dead and dying cells—engulf the virus as if it were a dying cell. Once engulfed by the phagocyte, the virus quickly turns the cell's own biology on its head, forcing it to produce copies of the virus.

While some viruses (influenza A for example) do not use PS in their life cycle, the flavivirus exploits this opportunity to the hilt. Infection of cells by dengue or West Nile viruses is markedly enhanced when phagocytes express receptors that recognize and bind PS.

It appears, however, that flaviviruses use only a subset of these receptors. The high selectivity, and the potency with which some of these receptors promote flavivirus infection, suggest only a small number of receptors might be effectively targeted to treat these diseases.

“We want to understand which PS receptors contribute the most to flavivirus infections and how we might block them,” Choe said. “Our studies are designed to offer insights useful in the development of new therapies.”

The number of the grant is 1R01AI110692.

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.


Comment/Share