Abstract: Dedifferentiation is the reversion of differentiated cells to a stem cell like fate, whereby, the gene expression program of mature cells is altered and genes associated with multipotency are expressed. Appropriate terminal differentiation of NSCs is essential for restricting the overall number of neurons produced; in addition, faithful production of neuronal subtypes that populate the brain is important for NSC function. Both characteristics of NSCs are specified through temporal patterning of the NSCs driven by the successive expression of temporal transcription factors (tTFs). In this study, we found that ectopic NSCs induced via bHLH transcription factor Deadpan (Dpn) expression fail to undergo timely expression of temporal transcription factors (tTFs), where they express mid-tTF, Sloppy-paired 1 (Slp-1) and fail to express late-tTF Tailless (Tll); consequently generating an excess of Twin of eyeless (Toy) positive neurons at the expense of Reversed polarity (Repo) positive glial cells. In addition to disrupted production of neuronal/glial progeny, Dpn overexpression also resulted in stalled progression through the cell cycle, and a failure to undergo timely terminal differentiation. Mechanistically, DamID studies demonstrated that Dpn directly binds to both Dichaete (D), a Sox-box transcription factor known to repress Slp-1, as well as a number of cell cycle genes. Promoting cell cycle progression or overexpression of D were able to re-trigger the progression of the temporal series in dedifferentiated NBs, restoring both neuronal diversity and timely NB terminal differentiation.

Journal Link: 10.1101/2022.07.24.501087 Journal Link: Publisher Website Journal Link: Download PDF Journal Link: Google Scholar