Abstract: The neural-crest derived enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal (GI) tract and controls all gut functions, including motility. Lack of ENS neurons causes various ENS disorders such as Hirschsprung Disease. One treatment option for ENS dis-orders includes the activation of resident stem cells to regenerate ENS neurons. Regeneration in the ENS has mainly been studied in mammalian species using surgical or chemically-induced injury methods. These mammalian studies showed a variety of regenerative responses with generally limited regeneration of ENS neurons, but (partial) regrowth and functional recovery of nerve fibers. Several aspects might contribute to the variety in regenerative responses, including observation time after injury, species, and gut region targeted. Zebrafish have recently emerged as a promising model system to study ENS regeneration as larvae possess the ability to generate new neurons after ablation. As the next steps in ENS regeneration research, we need a detailed under-standing of how regeneration is regulated on a cellular and molecular level both in animal models with high and low regenerative capacity. Understanding the regulatory programs necessary for robust ENS regeneration will pave the way for using neural regeneration as a therapeutic approach to treating ENS disorders.

Journal Link: Preprints Other Link: Download PDF Other Link: Google Scholar

MEDIA CONTACT
Register for reporter access to contact details
CITATIONS

Preprints; Download PDF; Google Scholar