Colon Cancer Researchers Target Stem Cells, Discover Viable New Therapeutic Path

Released: 12/2/2013 9:20 AM EST
Source Newsroom: University Health Network (UHN)
Contact Information

Available for logged-in reporters only

Citations Nature Medicine

Newswise — (TORONTO, Canada – Dec. 1, 2013) - Scientists and surgeons at Princess Margaret Cancer Centre have discovered a promising new approach to treating colorectal cancer by disarming the gene that drives self-renewal in stem cells that are the root cause of disease, resistance to treatment and relapse. Colorectal cancer is the third leading cause of cancer-related death in the Western world.

"This is the first step toward clinically applying the principles of cancer stem cell biology to control cancer growth and advance the development of durable cures," says principal investigator Dr. John Dick about the findings published online today in Nature Medicine.

He talks about the research in this video - click the link to watch: https://www.youtube.com/watch?v=QK7JquljkBc.

Dr. Dick pioneered the cancer stem cell field by first identifying leukemia stem cells (1994) and colon cancer stem cells (2007). He is also renowned for isolating a human blood stem cell in its purest form – as a single stem cell capable of regenerating the entire blood system – paving the way for clinical use (2011). Dr. Dick holds a Canada Research Chair in Stem Cell Biology and is a Senior Scientist at University Health Network's Princess Margaret Cancer Centre and McEwen Centre for Regenerative Medicine. He is also a Professor in the Department of Molecular Genetics, University of Toronto, and Director of the Cancer Stem Cell Program at the Ontario Institute for Cancer Research.

In pre-clinical experiments, the research team replicated human colon cancer in mice to determine if specifically targeting the stem cells was clinically relevant. First, the researchers identified that the gene BMI-1, already implicated in maintaining stem cells in other cancers, is the pivotal regulator of colon cancer stem cells and drives the cycle of self-renewal, proliferation and cell survival. Next, the team used an existing small-molecule inhibitor to successfully block BMI-1, thus demonstrating the clinical relevance of this approach.

Lead author Dr. Antonija Kreso writes: "Inhibiting a recognized regulator of self-renewal is an effective approach to control tumor growth, providing strong evidence for the clinical relevance of self-renewal as a biological process for therapeutic targeting."

Dr. Dick explains: "When we blocked the BMI-1 pathway, the stem cells were unable to self-renew, which resulted in long-term and irreversible impairment of tumour growth. In other words, the cancer was permanently shut down."

Surgeon-scientist Dr. Catherine O'Brien, senior co-author of the study says: "The clinical potential of this research is exciting because it maps a viable way to develop targeted treatment for colon cancer patients. It is already known that about 65% have the BMI-1 biomarker. With the target identified, and a proven way to tackle it, this knowledge could readily translate into first-in-human trials to provide more personalized cancer medicine."

The research was funded by, Genome Canada through the Ontario Genomics Institute, the Ontario Institute for Canada Research and a Premier's Summit Award with funds from the Province of Ontario, the Canadian Institutes of Health Research, the Canada Research Chair Program, the Ontario Ministry of Health and Long-Term Care, and The Princess Margaret Cancer Foundation.

About Princess Margaret Cancer Centre, University Health Network

The Princess Margaret Cancer Centre has achieved an international reputation as a global leader in the fight against cancer and delivering personalized cancer medicine. The Princess Margaret, one of the top five international cancer research centres, is a member of the University Health Network, which also includes Toronto General Hospital, Toronto Western Hospital and Toronto Rehabilitation Institute. All are research hospitals affiliated with the University of Toronto. For more information, go to http://www.theprincessmargaret.ca or http://www.uhn.ca .


Comment/Share