Feature Channels: Materials Science

Filters close
Released: 1-Feb-2021 11:05 AM EST
Tread tester
Sandia National Laboratories

Sandia National Laboratories and The Goodyear Tire & Rubber Co. have developed a virtual means of showing a tire’s performance before the first prototypes are ever built. Computer simulations test a virtual tire on a virtual test machine that simulates actual road conditions.

Released: 1-Feb-2021 10:40 AM EST
On the trail of Sars-CoV-2 in cable cars
Empa, Swiss Federal Laboratories for Materials Science and Technology

Where do the greatest risks of infection lurk? How can you protect yourself and others even better? Scientists all over the world are working to expand knowledge about Covid-19 – including at Empa. Researchers are now using measurements and simulations to take a close look at cable cars and cabins in ski resorts.

   
27-Jan-2021 3:35 PM EST
Islands without structure inside metal alloys could lead to tougher materials
University of California San Diego

An international team of researchers produced islands of amorphous, non-crystalline material inside a class of new metal alloys known as high-entropy alloys. This discovery opens the door to applications in everything from landing gears, to pipelines, to automobiles. The new materials could make these lighter, safer, and more energy efficient.

Released: 29-Jan-2021 1:00 PM EST
Supercomputers Used to Develop Longer-Lasting, Faster-Charging Batteries
University of California San Diego

Supercomputers funded by the National Science Foundation are being used to develop more reliable and efficient electric vehicles and other products by focusing on the batteries that power them.

Released: 29-Jan-2021 7:25 AM EST
Paper or Plastic? OU Chemical Engineers Work to Make Plastic Bags Recyclable and Compostable
University of Oklahoma, Gallogly College of Engineering

Single-use plastic bags continue to pose a global environmental challenge, as their composition and form makes them difficult to recycle, and hundreds of years are required for them to degrade fully in the environment. While reusabable shopping bags offer an earth-friendly option, what if plastic bags could be recycled or placed in our composts?

Released: 28-Jan-2021 1:40 PM EST
National laboratories’ magnet designers look to the future of light sources with new prototype
Argonne National Laboratory

After more than 15 years of work, scientists at three DOE national laboratories have succeeded in creating and testing an advanced, more powerful superconducting magnet made of niobium and tin for use in the next generation of light sources.

26-Jan-2021 9:00 AM EST
X-Ray Tomography Lets Researchers Watch Solid-State Batteries Charge, Discharge
Georgia Institute of Technology

Using X-ray tomography, a research team has observed the internal evolution of the materials inside solid-state lithium batteries as they were charged and discharged. Detailed three-dimensional information from the research could help improve the reliability and performance of the batteries, which use solid materials to replace the flammable liquid electrolytes in existing lithium-ion batteries.

Released: 27-Jan-2021 3:50 PM EST
$500,000 grant funds creation of institute to advance AI for materials science
Penn State Institute for Computational and Data Sciences

Funds from an NSF $500,000 grant will be used to bring together an interdisciplinary team of researchers with complementary expertise in artificial intelligence (AI) and material science to lay the groundwork for an AI-Enabled Materials Discovery, Design, and Synthesis (AIMS) Institute.

Released: 27-Jan-2021 2:35 PM EST
Copperizing the Complexity of Superconductivity
University of California San Diego

Copper oxides have the highest superconducting transition temperatures under normal conditions, but physicists aren’t sure why. A group of international researchers may have stumbled upon a major clue that could help revolutionize our understanding of these superconductive materials.

Released: 25-Jan-2021 2:45 PM EST
Adding or subtracting single quanta of sound
Imperial College London

Researchers perform experiments that can add or subtract a single quantum of sound--with surprising results when applied to noisy sound fields.

Released: 25-Jan-2021 2:25 PM EST
Transforming Plastics Recycling with Discovery Science
Department of Energy, Office of Science

Plastic waste is a major environmental issue. New research into plastics’ fundamental chemistry may help industry transform waste into useful products and make cyclical plastics that can be recycled over and over again.

Released: 21-Jan-2021 1:35 PM EST
Squeezing a rock-star material could make it stable enough for solar cells
SLAC National Accelerator Laboratory

A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature. Now scientists have discovered how to stabilize it with pressure from a diamond anvil cell. The required pressure is well within the reach of today's manufacturing processes.

Released: 19-Jan-2021 4:05 PM EST
Do simulations represent the real world at the atomic scale?
Argonne National Laboratory

A multidisciplinary research team has developed a strategy to validate computer simulations of oxide/water interfaces at the atomic scale using X-ray reflectivity experiments. Such interfaces are key in many energy applications.

Released: 19-Jan-2021 2:20 PM EST
Fastener with Microscopic Mushroom Design Holds Promise
American Institute of Physics (AIP)

A Velcro-like fastener with a microscopic design that looks like tiny mushrooms could mean advances for everyday consumers and scientific fields. Currently available fasteners are called hook and loop fasteners and require harder, stiff material. In Biointerphases, researchers describe a design that can use softer materials and still be strong enough to work. The team believes a 3D mushroom design can be made with softer, more flexible materials and provide sufficient interlocking force on the fabric and hold strong.

Released: 19-Jan-2021 2:15 PM EST
Could "Power Walking" fuel the energy revolution? India is ready to step up
De Gruyter

India has an energy problem. It currently relies heavily on coal and consumer demand is expected to double by 2040, making its green energy targets look out of reach.

Released: 18-Jan-2021 11:50 AM EST
Scientists Streamline Process for Controlling Spin Dynamics
Brookhaven National Laboratory

UPTON, NY—Marking a major achievement in the field of spintronics, researchers at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Yale University have demonstrated the ability to control spin dynamics in magnetic materials by altering their thickness. The study, published today in Nature Materials, could lead to smaller, more energy-efficient electronic devices.

Released: 15-Jan-2021 3:05 PM EST
Conductive nature in crystal structures revealed at magnification of 10 million times
University of Minnesota College of Science and Engineering

In groundbreaking materials research, a team led by University of Minnesota Professor K. Andre Mkhoyan has made a discovery that blends the best of two sought-after qualities for touchscreens and smart windows—transparency and conductivity.

Released: 14-Jan-2021 1:10 PM EST
Borrowing from birds, experts reduce search times for novel high-entropy alloys to seconds
Ames National Laboratory

Computational materials science experts at the U.S. Department of Energy’s Ames Laboratory enhanced an algorithm that borrows its approach from the nesting habits of cuckoo birds, reducing the search time for new high-tech alloys from weeks to mere seconds.

11-Jan-2021 4:30 PM EST
New method makes better predictions of material properties using low quality data
University of California San Diego

By combining large amounts of low-fidelity data with smaller quantities of high-fidelity data, nanoengineers at UC San Diego have developed a machine learning method to more accurately predict the properties of new materials including, for the first time, disordered materials.

Released: 14-Jan-2021 8:05 AM EST
New way to control electrical charge in 2D materials: Put a flake on it
Washington University in St. Louis

Physicists at Washington University in St. Louis have discovered how to locally add electrical charge to an atomically thin graphene device by layering flakes of another thin material, alpha-RuCl3, on top of it. A paper published with scientists at Boston College describes the charge transfer process in detail. Gaining control of the flow of electrical current through atomically thin materials is important to potential future applications in photovoltaics or computing.

13-Jan-2021 8:05 AM EST
Shine On: Avalanching Nanoparticles Break Barriers to Imaging Cells in Real Time
Lawrence Berkeley National Laboratory

A team of researchers co-led by Berkeley Lab and Columbia University has developed a new material called avalanching nanoparticles that, when used as a microscopic probe, offers a simpler approach to taking high-resolution, real-time snapshots of a cell’s inner workings at the nanoscale.

Released: 12-Jan-2021 1:30 PM EST
ElastiDry Wins DOE National Pitch Competition
Pacific Northwest National Laboratory

A panel of five judges from the Bay Area and Silicon Valley investment community chose the PNNL innovation from 10 product pitches.

7-Jan-2021 2:45 PM EST
Can Sodium-Ion Batteries Replace Trusty Lithium-Ion Ones?
American Institute of Physics (AIP)

Sodium-ion batteries are a potential replacement for lithium batteries, but different anodes are needed for the same level of performance. Amorphous carbon is known to be a useful anode, because it has defects and voids that can be used to store sodium ions. Nitrogen/phosphorus-doped carbon also offers appealing electrical properties. In Applied Physics Reviews, researchers describe how they applied basic physical concepts of atomic scale to build high-performance anodes for sodium-ion batteries.

Released: 12-Jan-2021 10:25 AM EST
Green earplugs
Empa, Swiss Federal Laboratories for Materials Science and Technology

Cars, trains, planes: For two thirds of the European population, traffic noise is part of everyday life. However, the right environment can have a major impact on this nuisance, as Empa researchers have found out. Green spaces in urban areas help to make road and railroad noise less of a nuisance. Only in the case of aircraft noise does this seem counterproductive: the greener the surroundings, the more disturbing the aircraft noise.

Released: 12-Jan-2021 8:25 AM EST
UCI scientists measure local vibrational modes at individual crystalline faults
University of California, Irvine

Irvine, Calif., Jan. 11, 2021 – Often admired for their flawless appearance to the naked eye, crystals can have defects at the nanometer scale, and these imperfections may affect the thermal and heat transport properties of crystalline materials used in a variety of high-technology devices. Employing newly developed electron microscopy techniques, researchers at the University of California, Irvine and other institutions have, for the first time, measured the spectra of phonons – quantum mechanical vibrations in a lattice – at individual crystalline faults, and they discovered the propagation of phonons near the flaws.

Released: 11-Jan-2021 2:50 PM EST
International collaboration creates more environmentally friendly products from biocomposite materials
Texas A&M University

Researchers from Texas A&M Engineering and the Ecole Nationale Superieure d'Arts et Métiers are collaborating to advance the science and technology for biocomposite manufacturing. Biocomposites are a composite material formed by a matrix (resin) and a reinforcement of natural fibers, that is more environmentally friendly.

Released: 11-Jan-2021 1:35 PM EST
Analytical Measurements Can Predict Organic Solar Cell Stability
North Carolina State University

Researchers have developed an analytical measurement “framework” which could allow organic solar cell researchers and manufacturers to determine which materials will produce the most stable solar cells prior to manufacture.

Released: 11-Jan-2021 12:40 PM EST
Study shows tweaking one layer of atoms on a catalyst’s surface can make it work better
SLAC National Accelerator Laboratory

When an LNO catalyst with a nickel-rich surface carries out a water-splitting reaction, its surface atoms rearrange from a cubic to a hexagonal pattern and its efficiency doubles. Deliberately engineering the surface to take advantage of this phenomenon offers a way to design better catalysts.

Released: 11-Jan-2021 11:45 AM EST
Tech giant technology is 'open source' for the pandemic, so why does it feel so closed?
University of Bath

The COVID-19 pandemic has seen hardware developers clamouring to make 'open source' technology to support our frontline services.

Released: 11-Jan-2021 8:00 AM EST
Researchers develop new one-step process for creating self-assembled metamaterials
University of Minnesota College of Science and Engineering

A team led by University of Minnesota Twin Cities researchers has discovered a groundbreaking one-step process for creating materials with unique properties, called metamaterials. Their results show the realistic possibility of designing similar self-assembled structures with the potential of creating “built-to-order” nanostructures for wide application in electronics and optical devices.

Released: 8-Jan-2021 8:30 AM EST
Hanging by a colored thread
Empa, Swiss Federal Laboratories for Materials Science and Technology

High-performance fibres that have been exposed to high temperatures usually lose their mechanical properties undetected and, in the worst case, can tear precisely when lives depend on them. For example, safety ropes used by fire brigades or suspension ropes for heavy loads on construction sites. Empa researchers have now developed a coating that changes color when exposed to high temperatures through friction or fire.

Released: 6-Jan-2021 12:00 PM EST
SOFC-XVII Brings World’s Leading Solid Oxide Fuel Cells Authorities to Stockholm in July 2021
The Electrochemical Society

For Immediate Release Pennington, NJ – The Electrochemical Society (ECS) is proud to announce that the 17th International Symposium on Solid Oxide Fuel Cells (SOFC-XVII) takes place in Stockholm, Sweden, from 18-23 July, 2021. The ECS High-Temperature Energy, Materials, & Processes Division and The SOFC Society of Japan are the meeting co-sponsors.

Released: 6-Jan-2021 9:45 AM EST
Brookhaven Lab's Top-10 Stories of 2020
Brookhaven National Laboratory

With all the remarkable changes and challenges that took place in 2020, the U.S. Department of Energy's Brookhaven National Laboratory had a banner year in science.

Released: 5-Jan-2021 2:35 PM EST
Supercomputer Models Describe Chloride’s Role in Corrosion
University of California San Diego

While researchers have been studying chloride’s corrosive effects on various materials for decades, high-performance computers were recently used to create detailed simulations to provide new insight on how chloride leads to corrosion.

Released: 5-Jan-2021 11:55 AM EST
Advanced materials in a snap
Sandia National Laboratories

A research team at Sandia National Laboratories has successfully used machine learning — computer algorithms that improve themselves by learning patterns in data — to complete cumbersome materials science calculations more than 40,000 times faster than normal.

Released: 5-Jan-2021 9:45 AM EST
Story tips: Nanoscale commuting, easy driver and defect detection
Oak Ridge National Laboratory

ORNL story tips: Nanoscale commuting, easy driver and defect detection

Released: 5-Jan-2021 6:00 AM EST
3D-Printed Smart Gel Changes Shape When Exposed to Light
Rutgers University-New Brunswick

Inspired by the color-changing skin of cuttlefish, octopuses and squids, Rutgers engineers have created a 3D-printed smart gel that changes shape when exposed to light, becomes “artificial muscle” and may lead to new military camouflage, soft robotics and flexible displays. The engineers also developed a 3D-printed stretchy material that can reveal colors when light changes, according to their study in the journal ACS Applied Materials & Interfaces.

Released: 4-Jan-2021 12:25 PM EST
First glimpse of polarons forming in a promising next-gen energy material
SLAC National Accelerator Laboratory

Polarons affect a material’s behavior, and may even be the reason that solar cells made with lead hybrid perovskites achieve extraordinarily high efficiencies in the lab. Now scientists have directly seen and measured their formation for the first time.

Released: 4-Jan-2021 10:45 AM EST
Better together: Scientists discover far-reaching applications of nanoparticles made of multiple elements
Argonne National Laboratory

As catalysts for fuel cells, batteries and processes for carbon dioxide reduction, alloy nanoparticles that are made up of five or more elements are shown to be more stable and durable than single-element nanoparticles.

Released: 21-Dec-2020 8:50 AM EST
Nikhil Tiwale: Practicing the Art of Nanofabrication
Brookhaven National Laboratory

Applying his passions for science and art, Nikhil Tiwale—a postdoc at Brookhaven Lab's Center for Functional Nanomaterials—is fabricating new microelectronics components.

Released: 21-Dec-2020 8:20 AM EST
Big step with small whirls
Empa, Swiss Federal Laboratories for Materials Science and Technology

Skyrmions are small magnetic objects that could revolutionize the data storage industry and also enable new computer architectures. However, before they can be utilized in such applications, there are still a number of challenges that need to be overcome. A team of Empa researchers has now succeeded for the first time in producing a tunable multilayer system in which two different types of skyrmions – the future bits for "0" and "1" – can exist at room temperature, as they recently reported in the renowned journal Nature Communications.

Released: 18-Dec-2020 2:50 PM EST
New class of cobalt-free cathodes could enhance energy density of next-gen lithium-ion batteries
Oak Ridge National Laboratory

Oak Ridge National Laboratory researchers have developed a new family of cathodes with the potential to replace the costly cobalt-based cathodes typically found in today’s lithium-ion batteries that power electric vehicles and consumer electronics.

Released: 18-Dec-2020 11:35 AM EST
Making it tougher: Samarium cobalt magnet improvements planned in Ames Lab partnership
Ames National Laboratory

Ames Laboratory will partner with Electron Energy Corporation to improve a mainstay of magnet technology-- the samarium cobalt (SmCo) magnet.

Released: 16-Dec-2020 5:20 PM EST
Fibrous protein finding may lead to improved bioprinting, tissue engineering
Penn State Materials Research Institute

Fibrous proteins such as collagen and fibrinogen form a thin solid layer on the surface of an aqueous solution similar to the “skin” that forms on warm milk, according to a team of Penn State researchers, who believe this finding could lead to more efficient bioprinting and tissue engineering.

Released: 16-Dec-2020 4:50 PM EST
The Mass of Human-Made Materials Now Equals the Planet’s Biomass, Weizmann Institute Finds
Weizmann Institute of Science

The Weizmann Institute's Prof. Ron Milo has shown that the mass of materials humans produce is now equal to that of all living things on Earth – and we're doubling that rate every 20 years. He warns that we are at the crossover point and must all “take responsibility.”

Released: 15-Dec-2020 1:30 PM EST
LED lights found to kill coronavirus: Global first in fight against COVID-19
American Friends of Tel Aviv University

Researchers from Tel Aviv University (TAU) have proven that the coronavirus can be killed efficiently, quickly, and cheaply using ultraviolet (UV) light-emitting diodes (UV-LEDs). They believe that the UV-LED technology will soon be available for private and commercial use.

   
Released: 15-Dec-2020 7:50 AM EST
NUS researchers develop wireless, ultra-thin and battery-free strain sensors that are 10 times more sensitive
National University of Singapore (NUS)

A research team from NUS Engineering has developed a new range of strain sensors that are 10 times more sensitive when measuring minute movements. These sensors are ultra-thin, battery-free and can transmit data wirelessly, making them attractive for a wide range of applications such as precision manufacturing, soft robotic rehabilitation glove and robotic surgery.

Released: 14-Dec-2020 2:20 PM EST
Stronger Cobalt for Fuel Cells
Pacific Northwest National Laboratory

A multi-institutional effort led to the design of a highly active and more durable catalyst made from cobalt, which sets the foundation for fuel cells to power transportation, stationary and backup power, and more.

Released: 14-Dec-2020 12:55 PM EST
One minute with Kate Sienkiewicz, LBNF Near Site Conventional Facilities project manager
Fermi National Accelerator Laboratory (Fermilab)

From working at the CIA to designing science facilities at Fermilab, Kate Sienkiewicz enjoys tackling complex problems. Currently, she oversees the team tasked with designing and building conventional facilities at the Long-Baseline Neutrino Facility near site for the international Deep Underground Neutrino Experiment — all with the overarching goal of understanding the universe.



close
3.83667