Feature Channels: Nanotechnology

Filters close
Released: 4-Sep-2019 12:05 PM EDT
NSF Awards SDSC and Partners $5.9 Million to Host EarthCube Office
University of California San Diego

The NSF has awarded the San Diego Supercomputer Center at UC San Diego and its partners a three-year, $5.9 million grant to host the EarthCube Office as part of the ongoing NSF-funded EarthCube program aimed at transforming geoscience research.

Released: 4-Sep-2019 12:05 PM EDT
Tiny, Sugar-Coated Sheets Selectively Target Pathogens
Department of Energy, Office of Science

Researchers developed molecular flypaper that recognizes and traps viruses, bacteria, and other pathogens.

Released: 4-Sep-2019 9:45 AM EDT
Story tips from the Department of Energy’s Oak Ridge National Laboratory, September 2019
Oak Ridge National Laboratory

ORNL story tips: ORNL’s project for VA bridges computing prowess, VA health data to speed up suicide risk screenings for U.S. veterans; ORNL reveals ionic liquid additive lubricates better than additives in commercial gear oil; researchers use neutron scattering to probe colorful new material that could improve sensors, vivid displays; unique 3D printing approach adds more strength, toughness in certain materials.

Released: 3-Sep-2019 11:00 AM EDT
Laser-Based Ultrasound Approach Provides New Direction for Nondestructive Testing
American Institute of Physics (AIP)

Many industrial buildings rely on ultrasound instruments that continually monitor the structural integrity of their systems without damaging or altering their features. One new technique draws on laser technology and candle soot to generate effective ultrasonic waves for nondestructive testing and evaluation.

Released: 28-Aug-2019 10:00 AM EDT
Smarter Experiments for Faster Materials Discovery
Brookhaven National Laboratory

UPTON, NY - A team of scientists from the U.S. Department of Energy's Brookhaven National Laboratory and Lawrence Berkeley National Laboratory designed, created, and successfully tested a new algorithm to make smarter scientific measurement decisions.

Released: 27-Aug-2019 4:30 PM EDT
Researchers Develop Better Method to Remove Toxic Dyes From Wastewater
Texas Tech University

A team of Texas Tech University researchers working in advanced textiles has found a new way to remove toxic dye pollutants from wastewater, and their approach is safer, cheaper and easier than traditional methods.

Released: 27-Aug-2019 12:05 PM EDT
Scientists Discover “Electron Equivalents” in Colloidal Systems
Argonne National Laboratory

In new research outlined in a recent issue of Science, scientists tethered smaller particles in colloidal crystals to larger ones using DNA, allowing them to determine how the smaller particles filled in the regions surrounding the larger ones.

20-Aug-2019 8:00 AM EDT
Nanoparticles Could Someday Give Humans Built-in Night Vision
American Chemical Society (ACS)

Movies featuring heroes with superpowers, such as flight, X-ray vision or extraordinary strength, are all the rage.

Released: 26-Aug-2019 2:05 PM EDT
Nina Balke: Fine-tuned science
Oak Ridge National Laboratory

As a researcher at ORNL’s Center for Nanophase Materials Sciences, a DOE Nanoscience User Facility, Nina Balke explores avenues for fine-tuning materials’ physical properties to solve energy challenges and expands fundamental research opportunities for CNMS users.

19-Aug-2019 1:30 PM EDT
Study Identifies Main Culprit Behind Lithium Metal Battery Failure
University of California San Diego

UC San Diego researchers have discovered the root cause of why lithium metal batteries fail, challenging a long-held belief in the field. The study presents new ways to boost battery performance and brings research a step closer to incorporating lithium anodes into rechargeable batteries.

Released: 19-Aug-2019 8:05 PM EDT
UniSA Nano Scientists Stop Superbugs in Their Tracks
University of South Australia

A team of researchers led by the University of South Australia has discovered a way to find and beat superbugs, providing a critical breakthrough against many deadly infectious diseases.

Released: 19-Aug-2019 5:05 PM EDT
Researchers realize world’s thinnest optical hologram with 2-D material monolayer
Missouri University of Science and Technology

Missouri S&T researchers are demonstrating a new concept to reconstruct holographic images by using a single two-dimensional material monolayer with the thickness of less than one nanometer. Their work could lead to the creation of smart watches with holographic displays, printed security cryptograms on bank notes and credit cards, and new possibilities for data storage.

Released: 19-Aug-2019 10:00 AM EDT
A Painless Skin Patch Simplifies Diagnostic Tests
National Institute of Biomedical Imaging and Bioengineering

Painless skin patch collects fluid to monitor biomarkers to speed up and simplify routine diagnostic testing.

   
Released: 15-Aug-2019 10:05 AM EDT
Nanoscale “Glass” Bottles Could Enable Targeted Drug Delivery
Georgia Institute of Technology

Tiny silica bottles filled with medicine and a special temperature-sensitive material could be used for drug delivery to kill malignant cells only in certain parts of the body, according to a study published recently by researchers at the Georgia Institute of Technology.

   
Released: 14-Aug-2019 4:30 PM EDT
Nanocapsule Reaches Cancer That Has Spread to Central Nervous System in Mice
University of California, Los Angeles (UCLA), Health Sciences

Researchers developed a drug delivery system that can break through the blood-brain barrier in mice.

Released: 14-Aug-2019 6:00 AM EDT
New Technology Could Aid Stem Cell Transplantation Research
Rutgers University-New Brunswick

Nanotechnology developed at Rutgers University–New Brunswick could boost research on stem cell transplantation, which may help people with Alzheimer’s disease, Parkinson’s disease, other neurodegenerative diseases, and central nervous system injuries.

   
12-Aug-2019 11:00 AM EDT
How do atoms vibrate in graphene nanostructures?
University of Vienna

In order to understand advanced materials like graphene nanostructures and optimize them for devices in nano-, opto- and quantum-technology it is crucial to understand how phonons – the vibration of atoms in solids – influence the materials’ properties. Researchers from the University of Vienna, the Advanced Institute of Science and Technology in Japan, the company JEOL and La Sapienza University in Rome have developed a method capable to measure all phonons existing in a nanostructured material. This is a breakthrough in the analysis of nanoscale functional materials and devices. With this pilot experiment using graphene nanostructures these researchers have shown the uniqueness of their approach, which will be published in the latest issue of Nature.

9-Aug-2019 7:05 PM EDT
Thinnest optical waveguide channels light within just three layers of atoms
University of California San Diego

UC San Diego engineers have developed the thinnest optical device in the world—a waveguide that is three layers of atoms thin. The work is a proof of concept for scaling down optical devices to sizes that are orders of magnitude smaller than today’s devices. It could lead to the development of higher density, higher capacity photonic chips.

Released: 9-Aug-2019 4:30 PM EDT
Scientists Can Now Control Thermal Profiles at the Nanoscale
University of Washington

Scientists have tested an experimental system that uses a near-infrared laser to actively heat two gold nanorod antennae to different temperatures. The nanorods are electromagnetically and thermally coupled, yet the team measured reversible temperature differences of up to 20 degrees Celsius.

Released: 1-Aug-2019 2:05 PM EDT
Tumor macrophage marker offers unique target for treatment
National Institute of Biomedical Imaging and Bioengineering

Macrophages are white blood cells that accumulate in tumors, and aid cancer progression. Now scientists have identified a surface protein found only on the macrophages residing in tumors, exposing a target for precise tumor treatments.

Released: 1-Aug-2019 9:00 AM EDT
Story tips from the Department of Energy’s Oak Ridge National Laboratory, August 2019
Oak Ridge National Laboratory

ORNL story tips: Training next-generation sensors to “see,” interpret live data; 3D printing tungsten could protect fusion reactor components; detailed study estimated how much more, or less, energy U.S. residents might consume by 2050 based on seasonal weather shifts; astrophysicists used ORNL supercomputer to create highest-ever-resolution galactic wind simulations; new solar-thermal desalination method improves energy efficiency.

Released: 1-Aug-2019 4:05 AM EDT
From Japanese basket weaving art to nanotechnology with ion beams
University of Vienna

The properties of high-temperature superconductors can be tailored by the introduction of artificial defects. An international research team around physicist Wolfgang Lang at the University of Vienna has succeeded in producing the world's densest complex nano arrays for anchoring flux quanta, the fluxons.

Released: 30-Jul-2019 8:00 AM EDT
Researchers Repair Faulty Brain Circuits Using Nanotechnology
Johns Hopkins Medicine

Working with mouse and human tissue, Johns Hopkins Medicine researchers report new evidence that a protein pumped out of some — but not all — populations of “helper” cells in the brain, called astrocytes, plays a specific role in directing the formation of connections among neurons needed for learning and forming new memories.

   
Released: 29-Jul-2019 11:05 AM EDT
Travelling towards a quantum internet at light speed
Osaka University

A research team lead by Osaka University demonstrated how information encoded in the circular polarization of a laser beam can be translated into the spin state of an electron in a quantum dot, each being a quantum bit and a quantum computer candidate.

Released: 29-Jul-2019 10:05 AM EDT
Transforming Advanced Nanoscience Data into Interactive Art
Brookhaven National Laboratory

A scientist, an artist, and a computer music professor combined 3-D printing, sound, and virtual reality to represent nanoscience data.

Released: 24-Jul-2019 10:30 AM EDT
Tiny changes, big impact
University of Wisconsin-Milwaukee

You can’t see nanoparticles, but many of the products we use contain these atomic-scale units of various chemical elements. Are these miniscule bits of human industry safe when they are shed into the environment? Rebecca Klaper is working to identify which are toxic and design them to be safer in the first place.

Released: 22-Jul-2019 8:05 AM EDT
Imaging the Chemical Structure of Individual Molecules, Atom by Atom
Brookhaven National Laboratory

An imaging guide that Brookhaven and ExxonMobil scientists made to identify petroleum contaminants could lead to cleaner, more efficient fuels.

17-Jul-2019 5:05 AM EDT
New Laws of Attraction: Scientists Print Magnetic Liquid Droplets
Lawrence Berkeley National Laboratory

Scientists at Berkeley Lab have 3D-printed a magnetic device out of liquids. Their findings could lead to printable liquid magnetic devices for a variety of applications such as artificial cells that deliver targeted cancer therapies to flexible liquid robots.

16-Jul-2019 8:05 PM EDT
A Graphene Superconductor That Plays More Than One Tune
Lawrence Berkeley National Laboratory

Researchers at Berkeley Lab have developed a graphene device that switches from a superconducting material that conducts electricity without losing any energy, to an insulator that resists the flow of electric current – all with a simple flip of a switch.

6-Jul-2019 8:00 AM EDT
Designer proteins form wires and lattices on mineral surface
Pacific Northwest National Laboratory

This research is a fundamental discovery of how to engineer proteins onto non-biological surfaces. Artificial proteins engineered from scratch have been assembled into nanorod arrays, designer filaments and honeycomb lattices on the surface of mica, demonstrating control over the way proteins interact with surfaces to form complex structures previously seen only in natural protein systems. The study provides a foundation for understanding how protein-crystal interactions can be systematically programmed and sets the stage for designing novel protein-inorganic hybrid materials.

Released: 10-Jul-2019 12:05 PM EDT
Giving nanowires a DNA-like twist
Argonne National Laboratory

Argonne National Laboratory played a critical role in the discovery of a DNA-like twisted crystal structure created with a germanium sulfide nanowire, also known as a “van der Waals material.” Researchers can tailor these nanowires in many different ways — twist periods from two to twenty micrometers, lengths up to hundreds of micrometers, and radial dimensions from several hundred nanometers to about ten micrometers. By this means, they can adjust the electrical and optical properties to optimize performance for different applications.

Released: 10-Jul-2019 9:00 AM EDT
Beat the Heat
University of Utah

University of Utah mechanical engineering associate professor Mathieu Francoeur has discovered a way to produce more electricity from heat than thought possible by creating a silicon chip, also known as a “device,” that converts more thermal radiation into electricity. This could lead to devices such as laptop computers and cellphones with much longer battery life and solar panels that are much more efficient at converting radiant heat to energy.

Released: 9-Jul-2019 2:05 PM EDT
Cyborg-like microchip valve driven by earthworm muscle
RIKEN

Scientists at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have developed the first microchip valve powered by living cells.

Released: 8-Jul-2019 5:05 PM EDT
New imaging method aids in water decontamination
Cornell University

A breakthrough imaging technique developed by Cornell University researchers shows promise in decontaminating water by yielding surprising and important information about catalyst particles that can’t be obtained any other way.

Released: 8-Jul-2019 4:05 PM EDT
Augustana University Professor’s Research Leads to Surprising Mating Decision in Butterfly Species
Augustana University, South Dakota

The males of one species of butterfly are more attracted to females that are active, not necessarily what they look like, according to a recent research conducted at Augustana University.The paper, “Behaviour before beauty: Signal weighting during mate selection in the butterfly Papilio polytes,” found that males of the species noticed the activity levels of potential female mates, not their markings.

Released: 8-Jul-2019 8:05 AM EDT
Optimizing the Growth of Coatings on Nanowire Catalysts
Brookhaven National Laboratory

A chemical surface treatment boosts the catalytic activity of the wire-looking nanostructures for a key reaction in solar fuel production.

Released: 5-Jul-2019 11:05 AM EDT
Camera brings unseen world to light
Harvard John A. Paulson School Of Engineering And Applied Sciences

When the first full-length movie made with the advanced, three-color process of Technicolor premiered in 1935, The New York Times declared "it produced in the spectator all the excitement of standing upon a peak ... and glimpsing a strange, beautiful and unexpected new world."

Released: 4-Jul-2019 8:05 PM EDT
Tiny Supersonic Jet Injector Accelerates Nanoscale Additive Manufacturing
Georgia Institute of Technology

By energizing precursor molecules using a tiny, high-energy supersonic jet of inert gas, researchers have dramatically accelerated the fabrication of nanometer scale structures. The rapid additive manufacturing technique also allows them to produce structures with high aspect ratios. Now, a theory developed to describe the technique could lead to new applications for additive nanomanufacturing and new nanoscale materials.

Released: 2-Jul-2019 2:05 PM EDT
Researchers cast neural nets to simulate molecular motion
Los Alamos National Laboratory

New work from Los Alamos National Laboratory, the University of North Carolina at Chapel Hill, and the University of Florida is showing that artificial neural nets can be trained to encode quantum mechanical laws to describe the motions of molecules

Released: 1-Jul-2019 9:20 AM EDT
WVU chemist is a molecular architect
West Virginia University - Eberly College of Arts and Sciences

West Virginia University chemist Kung Wang is an architect. Not the kind that builds houses – one that designs molecules. Wang is constructing a synthetic pathway to creating new molecular templates for growing carbon nanotubes

Released: 28-Jun-2019 3:50 PM EDT
X-ray Imaging Provides Clues to Fracture in Solid-State Batteries
Georgia Institute of Technology

Researchers at the Georgia Institute of Technology have used X-ray computed tomography (CT) to visualize in real time how cracks form near the edges of the interfaces between materials in solid-state batteries. The findings could help researchers find ways to improve the energy storage devices.

Released: 28-Jun-2019 12:05 PM EDT
Confirmation of old theory leads to new breakthrough in superconductor science
Argonne National Laboratory

Scientists at Harvard have developed a superconductor that is only one nanometer thick. By studying fluctuations in this ultra-thin material as it transitions into superconductivity, the scientists gained insight into the processes that drive superconductivity. They used the new technology to confirm a 23-year-old theory of superconductors developed by scientist Valerii Vinokur from the U.S. Department of Energy’s (DOE) Argonne National Laboratory. Their work could have applications in virtually any technology that uses electricity.

Released: 28-Jun-2019 11:05 AM EDT
Researchers teleport information within a diamond
Yokohama National University

Researchers from the Yokohama National University have teleported quantum information securely within the confines of a diamond.

Released: 20-Jun-2019 3:05 PM EDT
Advanced NMR at Ames Lab Captures New Details in Nanoparticle Structures
Ames National Laboratory

Advanced nuclear magnetic resonance (NMR) techniques at the U.S. Department of Energy’sAmes Laboratory have revealed surprising details about the structure of a key group ofmaterials in nanotechology, mesoporous silica nanoparticles (MSNs), and the placement of their active chemical sites.

Released: 11-Jun-2019 12:15 PM EDT
Pulsed Electron Beams Shed Light on Plastics Production
Lawrence Berkeley National Laboratory

Researchers at Berkeley Lab have developed a pulsed electron beam technique that enables high-resolution imaging of magnesium chloride without damage. This approach could apply to a vast range of beam-sensitive materials, and help to create a path toward sustainable plastics.

Released: 11-Jun-2019 12:05 PM EDT
iPhone plus nanoscale porous silicon equals cheap, simple home diagnostics
Vanderbilt University

The team combined their research on low-cost, nanostructured thin films with a device most American adults already own.

Released: 6-Jun-2019 12:05 PM EDT
Thwarting oil-pipeline corrosion by identifying a nanoscale villain
Sandia National Laboratories

Certain molecules of iron, when juxtaposed, have been found by Sandia National Labs and Aramco Research Center researchers to cause microscopic holes in steel pipe used for oil transport.

Released: 5-Jun-2019 3:05 PM EDT
Nanotechnology treatment shows promise against multiple sclerosis
University of California, Irvine

Irvine, Calif., June 5, 2019 — A nanotechnology treatment derived from bone marrow stem cells has reversed multiple sclerosis symptoms in mice and could eventually be used to help humans, according to a new study led by University of California, Irvine researchers.  “Until now, stem cell therapies for autoimmune and neurodegenerative diseases have produced mixed results in clinical trials, partly because we don’t know how the treatments work,” said corresponding author Weian Zhao, an associate professor of pharmaceutical sciences and biomedical engineering who is affiliated with the Sue & Bill Gross Stem Cell Research Center.

Released: 29-May-2019 4:05 PM EDT
Beyond 1 and 0: Engineers Boost Potential for Creating Successor to Shrinking Transistors
University of Texas at Dallas

A materials scientist from the University of Texas at Dallas has offered a solution to the fast-approaching physical minimum for transistor size: a multi-value logic transistor based on zinc oxide, capable of two stable intermediate states between 0 and 1.

Released: 27-May-2019 6:00 AM EDT
Coming soon: A home blood test to better monitor chronic illnesses
Universite de Montreal

In his lab, UdeM professor Alexis Vallée-Bélisle is busy perfecting a biosensor that patients with kidney disease, heart disease or other chronic illnesses can use without leaving home.

   


close
2.62729